
Pharmacokinetic/Pharmacodynamic (PK/PD) Based Approach to Lead Optimization in Discovery Programs

Ramesh Jayaraman

THERAINDX LIFESCIENCES PVT LTD
BENGALURU, INDIA

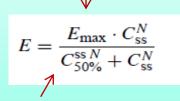
PK/PD in Drug Discovery

World Preclinical Congress, Boston, 2018

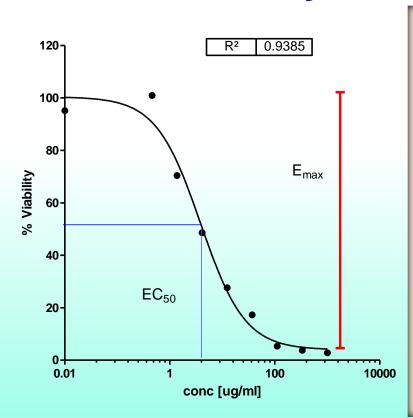
Lead Optimization Process

Lead:

- How is PK related to Efficacy?
- Optimum PK = Optimum Efficacy?
- Quantitation of PK/PD
 - ☐ Dose?
 - ☐ Frequency?
 - ☐ Duration?


Intrinsic Pharmacodynamics

In vitro

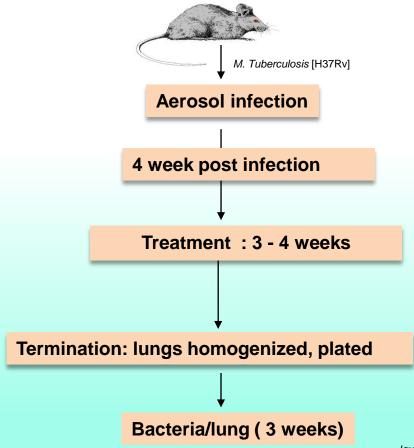

- ☐ Enzyme/receptor
- ☐ Cells

Intrinsic Efficacy [E_{max}]

Potency [EC₅₀]

In vivo

- 1. What dose?
- ✓ Dose (PK) response
- 2. What frequency?
- ✓ Time course of response
- 3. Duration of dosing to achieve maximum effect?
- ✓ Based on 1 and 2


 E_{max} and EC_{50} in vivo

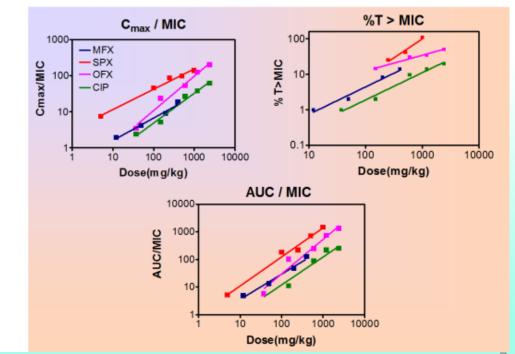
TUBERCULOSIS: DISCOVERY OF ANTI-TB COMPOUNDS

Murine Model: Tuberculosis

PK/PD Based Evaluation of compounds

- □ SOC Drugs Rifampicin, INH : PK/PD = AUC/MIC
- ☐ Four Fluoroquinolones
 - Analogues

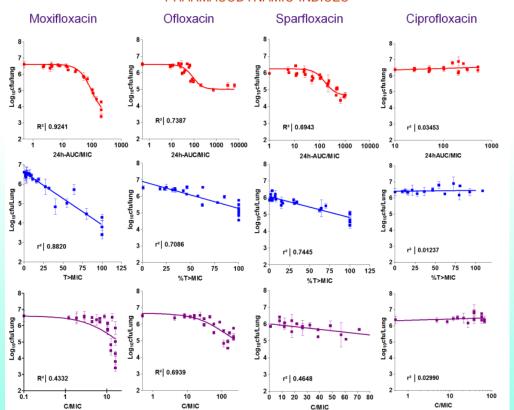
Potency, PK: Fluoroquinolones


Oral Plasma PK in Mice

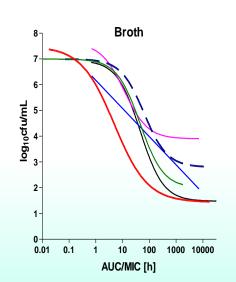
- Moxifloxacin (MFX)
- Sparfloxacin (SPX)
- Ofloxacin (OFX)
- Ciprofloxacin (CIP)

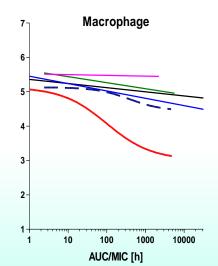
MINIMUM INHIBITORY CONC [mg/L]

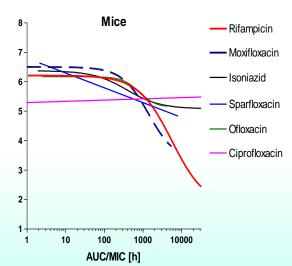
	Mfx	Spx	Ofx	Cip
Broth	0.5	0.1	0.5	0.5
Serum	0.5	0.2	0.5	0.5
Intracellular	1.0	0.5	2.0	4.0


DOSE PROPORTIONALITY

PK/PD Relationships


PHARMACODYNAMIC INDICES




In vivo Bactericidal Effect				
	E _{max}	EC ₅₀ - AUC ₂₄ /MIC		
MFX	3.2	97.2		
OFX	1.5	87.7		
SPX	1.3	164.5		
CIP	0	nd		

- □ AUC/MIC correlated with Efficacy
- □ Different Efficacies
- □ Similar Potencies

TheraIndx In vitro-in vivo Pharmacodynamic Correlations

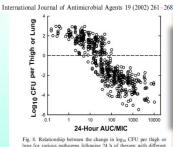
Learning from Fluoroquinolones:

- Plasma PK + intracellular kill predictive of efficacy
- **E**_{max} different but EC₅₀ similar for members of same class

Conclusions:

- Design analogues based only on MIC, intracellular potency and PK
- All compounds need not be tested in lengthy animal model: Quicker turnaround
- PK/PD approach saves time and resources for optimization phase

Advantages of Intrinsic Pharmacodynamics

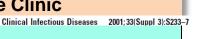

- Rank order compounds based on Intrinsic Efficacy - E_{max}, EC₅₀
 - Factors PK and PD properties of compound
 - Best PK ≠ Best Efficacy?

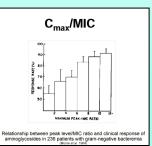
Quantitative Pharmacology or Pharmacokinetic Pharmacodynamic Integration Should Be a Vital Component in Integrative Pharmacology

Discovery DMPK & BAC, AstraZeneca R&D Mölndal, Mölndal, Sweden (J.G.); and Institute of Neuroscience, School of Riomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (A.R.G.

Pharmacodynamics (PD) examines the relationship between drug concentration and onset, intensity, and duration of the formation. A primary requirement for PKPD integration and response-time relationships, with special emphasis on the proposed impact of the drug on the disease. The review aims to drug exposure measurements, plasma protein bir compounds, and scaling compounds to humans and has bewhy ignoring pharmacokinetics can lead to misl omparatively rare in experimental pharmacology, and its ab-

pharmacological affect. Pharmacokingtics (PK) is the science of __establishing the inter-relationships between in vitro and in viv ome mandatory for regulatory bodies. However, its use is still—and conclusions. Finally, a guide list of points to be consider




lung for various pathogens following 24 h of therapy with different doses of various fluoroquinolones.

- Predicting effect of subsequent compounds [LO phase] based on PK & Potency
 - compounds from same class act on same target
 - Useful for long term efficacy models

Set Exposure and Dose needed to achieve maximum efficacy in the Clinic

ACKNOWLEDGEMENT

PK/PD Team - AstraZeneca, Bangalore

Prof. Johan Gabrielsson