

Introduction and Purpose

The mouse is the workhorse for characterisation of anti-infective PK/PD with high predictive value in humans (1), but it has some limitations. The rat model offers advantages over the mouse in the following cases: a) Evaluation of Pharmacokinetics (PK)/Pharmacodynamics (PD) of anti-infectives administered as intravenous (IV) infusions similar to clinical situations; b) Obtaining simultaneous PK and PD data from the same animal.

Limited information exists on PK/PD of drugs following IV infusion dosing in the neutropenic thigh infection model in rat.

Aim: To characterise the PK/PD of Ciprofloxacin in the neutropenic thigh infection model following IV bolus and infusion administrations at human equivalent doses.

Methods

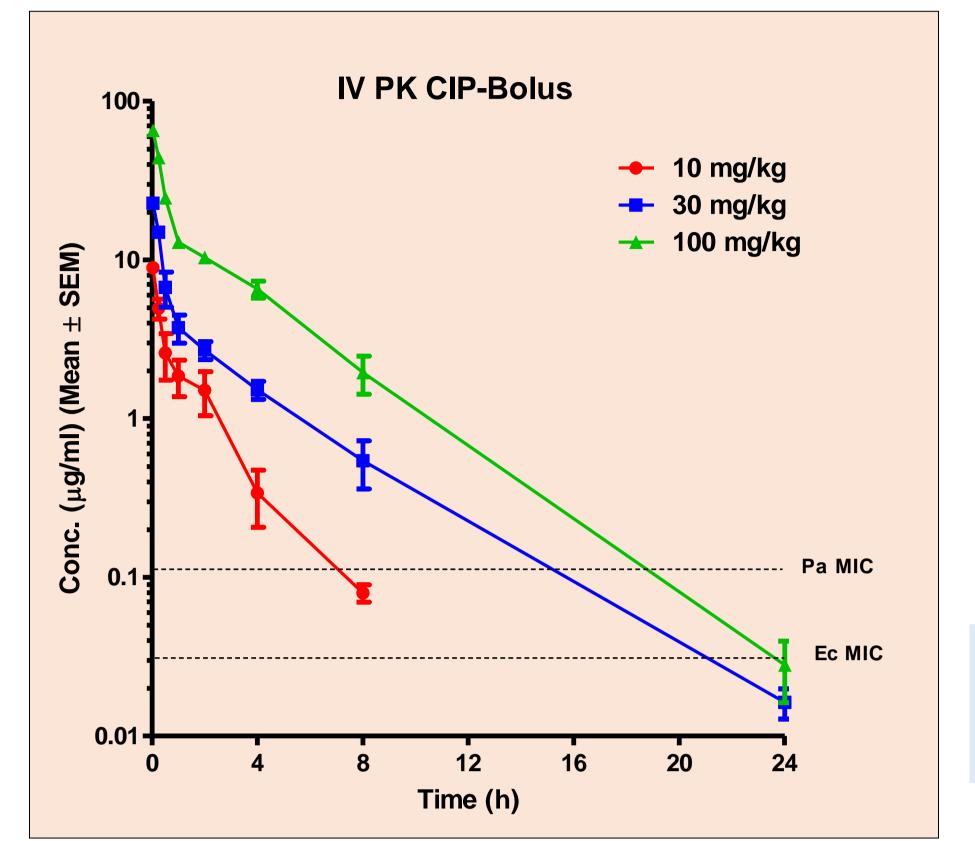
- Microorganisms: Escherischia coli (ATCC25922) (Ec), Pseudomonas aeruginosa (ATCC27853)(Pa), Acinetobacter baumannii (ATCC19606) (Ab), Klebsiella pneumoniae (ATCC13883) (Kp) were from ATCC.
- Minimum Inhibitory Concentration (MIC) was performed in microtiter plate format using standard microdilution methods.
- Chemicals: Ciprofloxacin (CIP) and Cyclophosphamide were from Sigma and TCI chemicals, respectively. All other reagents were of analytical grade.
- **Animal Studies**: Study protocols were approved by the Institutional Animal Ethics Committee. Male Wistar rats (6-8 weeks) were used in PK and PD studies.
- Neutropenic Rat thigh infection (RTI) model (2): Neutropenia was induced by cyclophosphamide (1). Ec/Pa/Ab/Kp was injected into thighs (~2 x 10⁶ CFU/animal). Treatment was initiated at 2 h post infection (PI); animals were terminated at 26 h PI (24 h post dose), thighs collected, weighed, homogenised and plated for bacterial enumeration ($Log_{10}CFU/g$ thigh).
- IV PK/PD:
 - □ PD: Two h PI, rats infected with Ec or Pa, were given CIP at 10, 30 and 100 mg/kg as IV bolus, 30 and 60 min IV infusions (constant rate). Infusions were administered to anesthetized rats (Ketamine (60 mg/kg IP) + Xylazine (10 mg/kg IP)). Bacterial densities in thighs were estimated at 24 h post dose.
 - □PK: PK was performed in PD animals. Serial blood samples were drawn at different time points and plasma harvested. CIP was quantified in plasma by LC/MS/MS. Non-compartmental PK parameters were estimated using WinNonlin (Certara)

□PD of CIP at rat equivalent human doses in rats (3): The doses of CIP used in the clinic were converted to rat doses using the formula : Rat dose $(mg/kg) = Human dose (mg/kg)/(rat weight in kg/human weight in kg)^{0.33}$

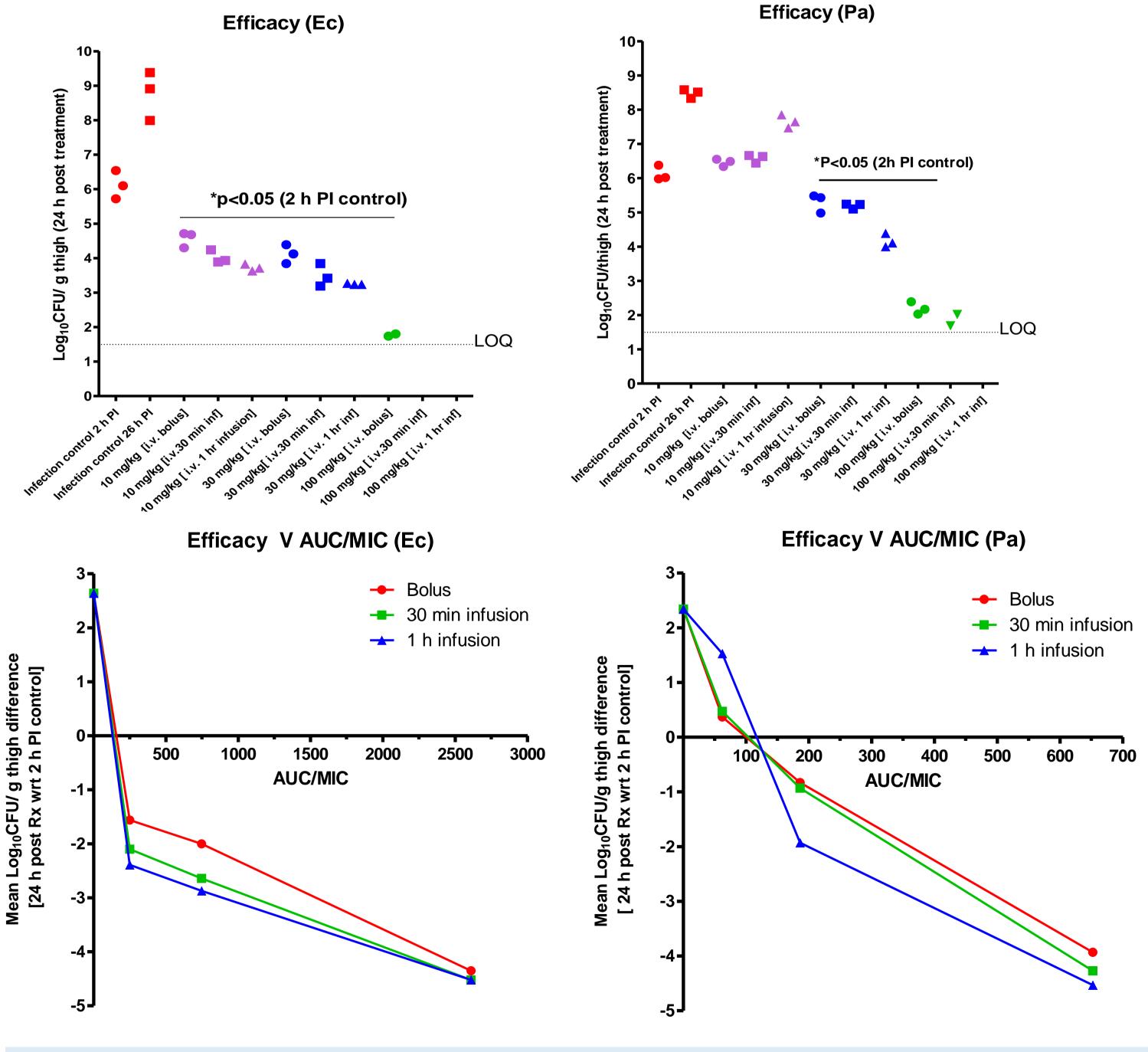
CIP Human dose (4,5)	Rat equivalent total dose/re
200 mg <i>bid</i> , IV=Total dose 400 mg (7 mg/kg)	Total dose 50 mg/kg (<i>uid</i>), 1 h IV in
	Total dose 50 mg/kg (25 mg/kg, bi
400 mg <i>bid</i> , IV =Total dose 800 mg (14 mg/kg)	Total dose 90 mg/kg (<i>uid</i>), 1 h IV i
	Total dose 90 mg/kg (45 mg/kg bid

Rats infected with Ec, Pa, Ab and Kp were treated with indicated doses/regimens. Bacterial densities in thighs were estimated at 24 h post dose. **Data analysis:** 1 way ANOVA (95 % confidence levels)

RESULTS


MIC

Organism	MIC range (µg/ml)			
<i>E. coli</i> (ATCC25922)	0.0156 - 0.03125			
P. aeruginosa (ATCC27853)	0.0625 - 0.125			
<i>A. baumannii</i> (ATCC19606)	0.25 - 0.5			
K. pneumoniae (ATCC13883)	0.125 - 0.25			


The Neutropenic Rat Thigh Infection Model is Ideal for Characterisation of Pharmacokinetics/Pharmacodynamics (PK/PD) of Anti-infectives Following Intravenous Infusion Administration

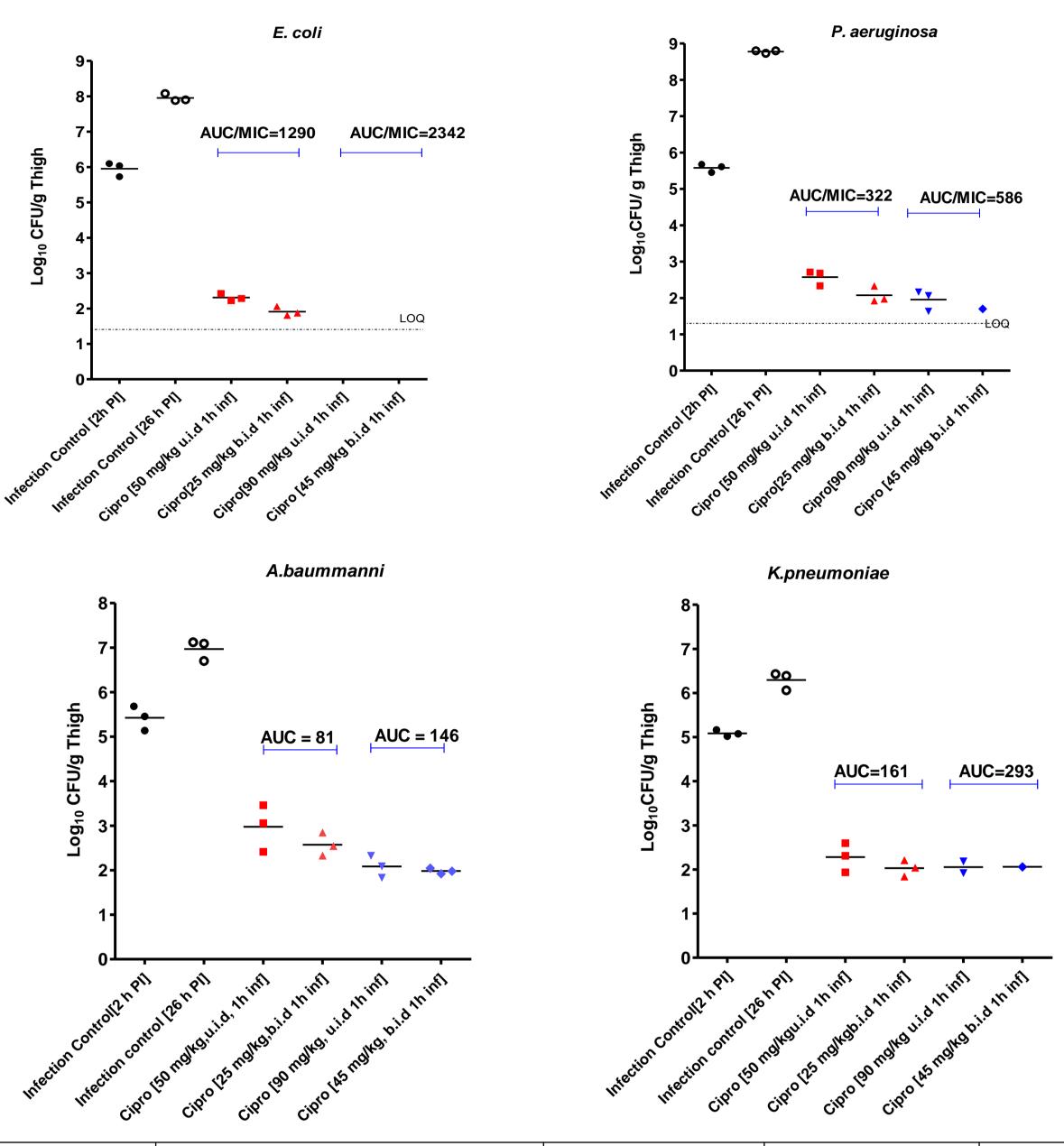
Ramesh Jayaraman, Mahesh Kumar Reniguntla, Randhir Yedle, Rameshwar Palmate, Avinash Pawar, Somashekharayya Hiremath, Mahesh Nanjundappa TheraIndx Lifesciences Private Ltd., Bangalore 562123, India

IV (Bolus) Pharmacokinetics of CIP in Infected Rats

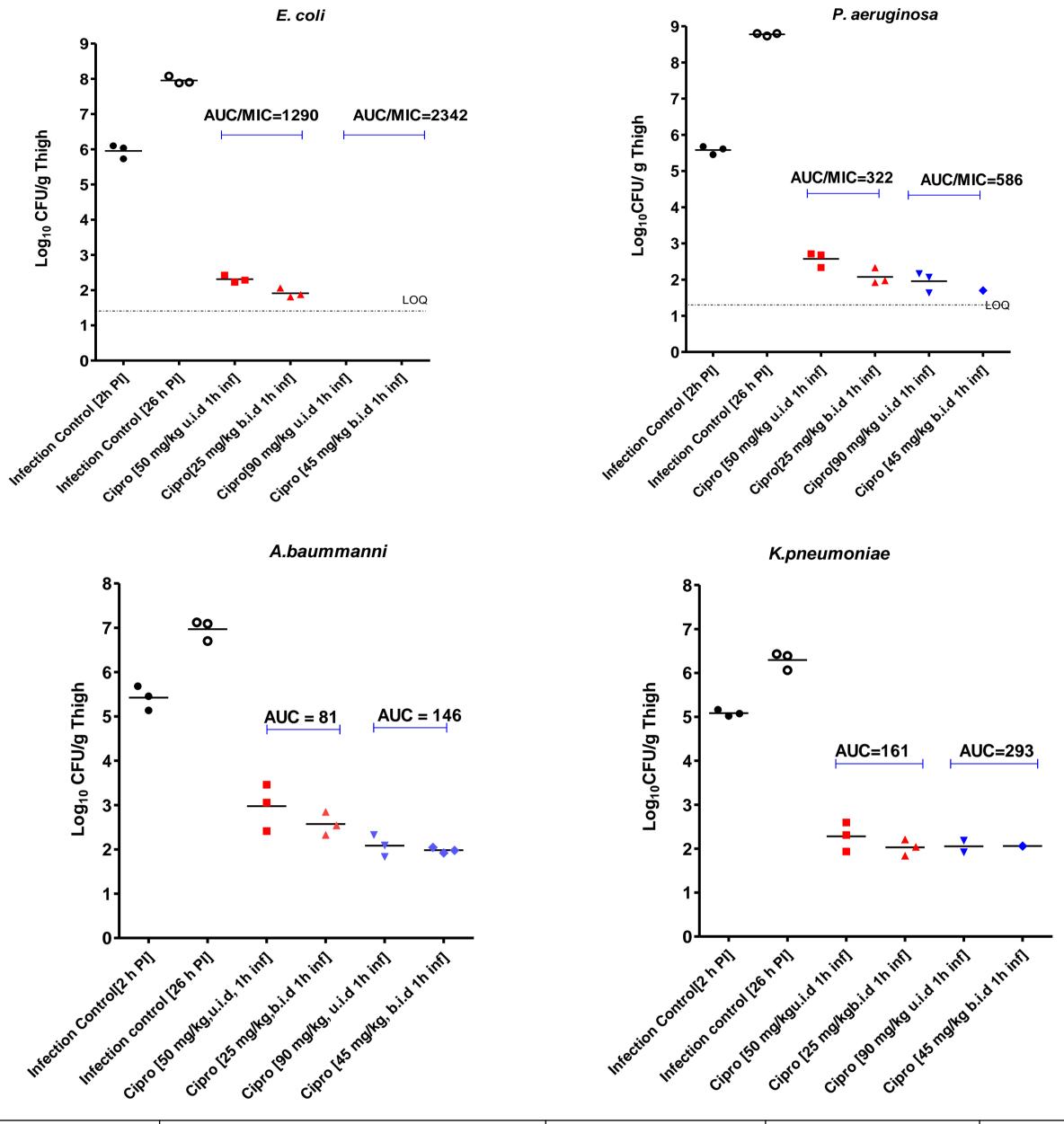
IV Pharmacodynamics of CIP in RTI model

- □ CIP showed significant dose dependent efficacy when given as bolus and infusions □ Efficacy of CIP was comparable when administered as bolus, 30 min and 60 min infusions,
- consistent with PK/PD index
- \Box AUC/MIC ~200 associated with 1 Log₁₀CFU/g thigh reduction

bid) 1 h IV inf oid), 1 h IV inf


NCA PK parameters and PK/PD indices of CIP in rats infected with Ec : IV Bolus


Dose	10 mg/kg	30 mg/kg	100 mg/kg
C _{max} (µg/ml)	8.95 ± 0.74	22.8± 2.0	65.43 ± 4.5
AUC _{inf} (µg.h/ml)	7.78 ± 2.14	23.3 ± 5.1	81.52 ± 2.41
t _{1/2} (h)	1.54 ± 0.18	3.0 ± 0.29	2.48 ± 0.5
V _{ss} (l/kg)	2.3 ± 0.74	3.95 ± 0.5	3.64 ± 0.33
CL(I/h/kg)	1.35 ± 0.33	1.33 ± 0.3	1.23 ± 0.04
AUC ₂₄ /MIC _{Ec}	249	746	2609
AUC ₂₄ /MIC _{Pa}	62	186	652
C _{max} /MIC _{Ec}	286	730	2094
C _{max} /MIC _{Pa}	72	182	523


•	CIP	showed	linear	PK	with	high	V_{ss}	and
		erate clea						
•		macologi	•	activ	-	PK/PD	ta	rgets
	achieved against Ec and Pa							

Species	Dose/regimen/IV Infusion	AUC _{24h} (µg.h/ml)	AUC ₂₄ /MIC	C _{max} (µg/ml)	C _{max} /MIC	Efficacy
Humans*	Total dose 400 mg (7 mg/kg -200 mg <i>bid</i> , IV)	49 (9.0-229)	802 (6.2-5541)	4.8 (1.9-15.4)	100 (0.9-769)	88% Clinical cure/ 81 % microbiological cure
Rat (human equivalent dose)	Total dose 50 mg/kg (<i>uid</i>)	40	81-1290	34	69-1102	100% survival ;> 3 Log ₁₀ CFU/g thigh reduction at 24 h post treatment
	Total dose 50 mg/kg (25 mg/kg <i>bid</i>)	40	81-1290	19	38-604	100% survival ;> 3 Log ₁₀ CFU/g thigh reduction at 24 h post treatment
	Total dose 90 mg/kg (<i>uid</i>)	73	146-2342	59	119-1900	100% survival ;> 3 Log ₁₀ CFU/g thigh reduction at 24 h post treatment
	Total dose 90 mg/kg (45 mg/kg <i>bid</i>)	73	146-2342	31	62-992	100% survival ;> 3 Log ₁₀ CFU/g thigh reduction at 24 h post treatment
* Data are from ref 4						

- exposures (4) when administered as IV infusions.
- equivalent doses (4).
- > 125.

The rat thigh infection model can be useful for a) Evaluation of PK/PD of anti-infectives intended for IV infusions, b) Simultaneous recording of PK and PD in the same animal, c) Developing PK/PD models for anti-infectives, d) Prediction of PK/PD in humans, and e) Additional species for proof of concept studies.

- Ambrose PG et al 2007 Clin. Infect. Dis. 44:79-86
- Zhang H et al 2008. *In vivo* **22**: 667-672
- Pankey GA,1995 *Clin Ther.* **17(3)**:353-65.

th ECCMID EU

Abstract number: 1024

- 16 April 2019

Efficacy at Rat Equivalent Human Doses

Conclusions

□ The 24 h exposures of CIP in infected rats at human equivalent doses were similar to human

□ Range of 24 h PK/PD indices and efficacies achieved in rats were comparable to humans at

□ PK/PD of CIP was similar to mice (1) and humans (4) - significant efficacy observed when AUC/MIC

References

Guidance for Industry-Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. U.S. FDA-CDER July 2005 Pharmacology and Toxicology Forrest et al 1993. Antimicrob. Agents Chemother.37(5):1073-1081